Direct perfusion measurements of cancellous bone anisotropic permeability.
نویسندگان
چکیده
More extensive characterization of trabecular connectivity and intertrabecular space will be instrumental in understanding disease states and designing engineered bone. This project presents an experimental protocol to define the directional dependence of transport properties as measured from healthy cancellous bone when considered as a biologic, porous medium. In the initial design phases, mature bovine bone was harvested from the femoral neck (n=6 cylinders) and distal condyle (n=4 cubes) regions and used for "proof of concept" experimentation. A power study on those results led to the presented work on 20 cubic samples (mean volume=4.09cm(3)) harvested from a single bovine distal femur. Anisotropic intrinsic permeabilities (k(i)) were quantified along the orthogonal anatomic axes (i=medial-lateral, anterior-posterior, and superior-inferior) from each individual cubic bone sample. Using direct perfusion measurements, permeability was calculated based upon Darcy's Law describing flow through porous media. The maximum mean value was associated with the superior-inferior orientation (4.65x10(-10)m(2)) in comparison with the mean anterior-posterior (4.52x10(-10)m(2)) and medial-lateral (2.33x10(-10)m(2)) direction values. The results demonstrate the anisotropic (p=0.0143) and heterogeneous (p=0.0002) nature of the tissue and encourage the ongoing quantification of parameters within the established poroelastic models.
منابع مشابه
Linear poroelastic cancellous bone anisotropy: trabecular solid elastic and fluid transport properties.
The mechanical performance of cancellous bone is characterized using experiments which apply linear poroelasticity theory. It is hypothesized that the anisotropic organization of the solid and pore volumes of cancellous bone can be physically characterized separately (no deformable boundary interactive effects) within the same bone sample. Due to its spongy construction, the in vivo mechanical ...
متن کاملEstimation of anisotropic permeability in trabecular bone based on microCT imaging and pore-scale fluid dynamics simulations
In this paper, a comprehensive framework is proposed to estimate the anisotropic permeability matrix in trabecular bone specimens based on micro-computed tomography (microCT) imaging combined with pore-scale fluid dynamics simulations. Two essential steps in the proposed methodology are the selection of (i) a representative volume element (RVE) for calculation of trabecular bone permeability an...
متن کاملDetermination of the Parameters of Cancellous Bone Using High Frequency Acoustic Measurements Ii: Inverse Problems
In a precursor to this article the Biot model was used to model poroelastic media. The question this article addresses is whether the sort of experiments described by McKelvie and Palmer, Williams, and Hosokawa and Otani can be used to determine the parameters of the Biot model. A method of computing acoustic pressure in the low 100 kHz range was developed in Buchanan and Gilbert, “Determinatio...
متن کاملA 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion.
The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was t...
متن کاملHow to determine the permeability for cement infiltration of osteoporotic cancellous bone.
Cement augmentation is an emerging surgical procedure in which bone cement is used to infiltrate and reinforce osteoporotic vertebrae. Although this infiltration procedure has been widely applied, it is performed empirically and little is known about the flow characteristics of cement during the injection process. We present a theoretical and experimental approach to investigate the intertrabec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 34 9 شماره
صفحات -
تاریخ انتشار 2001